Quantum Circuits for *d*-level Systems

Stephen S. Bullock

joint with

Gavin K. Brennen (NIST-PL) and Dianne P. O'Leary (MCSD,UMCP)

Mathematical and Computational Sciences Division National Institute of Standards and Technology

Quantum Information Theory and Practice seminar November 4, 2004

Outline

- I. Introduction to Qudits (Quantum Multi-level Logics)
- II. Universality & Selection Rules
- III. Complexity and Lower Bounds
- IV. Asymptotically Optimal Qudit State-Synthesis
- V. *QR*-based Asymptotically Optimal Circuits

Qudits, i.e. Quantum Multi-level Logics

- Q.C. replaces bit with qubit: two state quantum system, states $|0\rangle$, $|1\rangle$
- Multi-level logic: not bit but dit, values $0,1,\ldots,d-1$
- Qudit: states $|0\rangle$, $|1\rangle$, ..., $|d-1\rangle$
 - Single qudit state space $\mathcal{H}(1,d) = \mathbb{C}|0\rangle \oplus \mathbb{C}|1\rangle \oplus \cdots \oplus \mathbb{C}|d-1\rangle \cong \mathbb{C}^d$
 - n-qudit state space

$$\mathcal{H}(n,d) = \bigotimes_{1}^{n} \mathcal{H}(1,d) = \bigoplus_{\bar{c} \in (\mathbb{Z}/d\mathbb{Z})^{n}} \mathbb{C}|\bar{c}\rangle \cong \mathbb{C}^{dn}$$

Emulating Qudits with Qubits

- Scheme #1: Pack each qudit into $\lceil \log_2 d \rceil$ qubits, $n \lceil \log_2 d \rceil$ total
 - Qubit circuits yield qudit circuits
 - Some virtual two-qubit gates are qudit-local
 - Heuristic: Hilbert space dimensions are fungible
- Scheme #2: Pack n qudits into $\lceil \log_2 d^n \rceil \neq n \lceil \log_2 d \rceil$ qubits
 - Single qudit levels spread across multiple qubits
 - Circuit diagrams do not translate: not that fungible!

Why Qudits?

- More efficient use of physical system, if all states may be controlled
- Trade-off: If $d = 2^{\ell}$, fewer entangling gates, more local op's
- More natural for some computations, especially (Hoyer, q-ph/9702028) Fourier transform of $\mathbb{Z}/d^n\mathbb{Z}$ in case gcd(d,2)=1
- Perhaps less decoherence or better error correction if $d \neq 2$

Outline

- I. Introduction to Qudits (Quantum Multi-level Logics)
- II. Universality & Selection Rules
- III. Complexity and Lower Bounds
- IV. Asymptotically Optimal Qudit State-Synthesis
- V. *QR*-based Asymptotically Optimal Circuits

Motivation: Quoctet 87 Rb Hyperfine Levels (d=8) & Allowed Couplings

Motivation: Quoctet 87 Rb Hyperfine Levels (d=8) & Allowed Couplings Cont.

• Template One-qudit Hamiltonians: $\begin{array}{ll} H^x_{jk} &=& |k\rangle\langle j| + |j\rangle\langle k| \\ H^y_{jk} &=& i|k\rangle\langle j| - i|j\rangle\langle k| \end{array}$

• Certain levels $|j\rangle$, $|k\rangle$ allow atom-laser Hamiltonian:

$$H_{AL,jk} = \cos(\phi)H_{jk}^{x} + \sin(\phi)H_{jk}^{y}$$

• Selection rule: only allow H_{jk}^x , H_{jk}^y for certain pairs (j,k):

$$(0,5), (0,6), (0,7), (1,4), (1,6), (2,3), (2,4), (2,5)$$

Universality Problems

- Notation: $U(\ell) = \{ V \in \mathbb{C}^{\ell \times \ell} ; V\overline{V}^T = I_{\ell} \}$
- U(d) for one-qudit unitary evolution, $U(d^n)$ for n-qudits
- Problem #1: Can we build all one-qudit unitary evolutions using time evolution by Hamiltonians allowed by our selection rule?
- Problem #2: Given a nice two-qudit Hamiltonian, e.g. $\mathbf{H} = |d-1\rangle \otimes |d-1\rangle \langle d-1| \otimes \langle d-1|$, can we construct evolutions for all $V \in U(d^{2n})$?

Universality Technique: QR Decompositions

- QR Decomposition: Any $M \in \mathbb{C}^{\ell \times \ell}$ factors M = RU, $U\overline{U}^T = I_\ell$, R semi-upper triangular
 - Columns of U: Hermitian o.n. basis of \mathbb{C}^{ℓ}
 - One method: Gram Schmidt o.n. of columns of M
 - Other methods: build unitaries U_1, \ldots, U_p , each adding subdiagonal 0's to partial products $U_k U_{k+1} \ldots U_p M$
 - * U_q may be Givens rotations U_q act as $V \in U(2)$ on $\mathbb{C}|j\rangle \oplus \mathbb{C}|k\rangle$, identity else
 - * U_q may be Householder reflections For fixed $|\psi\rangle$, reflect so $U_q|\psi\rangle = \sqrt{\langle\psi|\psi\rangle}|0\rangle$

QR Reduction Using Givens Rotations

$$\begin{pmatrix} * & * & * & * \\ * & * & * & * \\ 0 & * & * & * \\ 0 & * & * & * \end{pmatrix} \xrightarrow{V_{2,3}} \begin{pmatrix} * & * & * & * \\ * & * & * & * \\ 0 & * & * & * \\ 0 & 0 & * & * \end{pmatrix} \xrightarrow{V_{0,1}}$$

$$\begin{pmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & * & * & * \\ 0 & 0 & * & * \end{pmatrix} V_{2,3} \circ V_{1,2} \begin{pmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & 0 & * & * \\ 0 & 0 & 0 & * \end{pmatrix}$$

Universality Technique: *QR* **Decompositions Cont.**

• Coupling graph: short-hand describing allowed $H_{j,k}^x$, $H_{j,k}^y$

• Notation: any unitary 2×2 matrix V, with V_{jk} the associated Givens rotation in $\mathbb{C}|j\rangle \oplus \mathbb{C}|k\rangle$

Coupling Graph-Based *QR* Decomposition: One-qudit Universality

• Euler angle technique: Givens rotations for coupled $|j\rangle$, $|k\rangle$

$$V_{jk} = e^{i\phi} \exp(it_0 H_{jk}^x) \exp(it_1 H_{jk}^y) \exp(it_2 H_{jk}^x)$$

- Problem #1 Restatement: Build $U \in U(d)$ using a restricted set of Givens rotations encoded in the coupling graph
- This is possible using an optimal number of V_{ik} :
 - Build spanning tree of coupling graph
 - Introduce zero at entry of leaf, remove leaf, etc.

Two-qudit Generalizations of CNOT

- Generalization #1: $\bigwedge_1(\sigma^x \oplus I_{d-2})$, exchanging $|0\rangle \leftrightarrow |1\rangle$, $|\ell\rangle \mapsto |\ell\rangle$ else
- Increment gate INC: one qudit modular addition, INC $|\ell\rangle = |\ell+1 \mod d \rangle$; INC is denoted in circuits as \bigoplus
- Generalization #2: CINC = Λ_1 (INC) CINC denoted in circuits by old CNOT symbol
- CINC constructible from U(d), $\bigwedge_1(\sigma^x \oplus I_{d-2})$
- Using ancillas, $U(d) \sqcup \{ \bigwedge_1(V) \}$ is exact-universal

QR Technique for Two-qudits, i.e. $U(d^2)$

• Barenco et al (q-ph/9503016): Any 2×2 unitary $V = e^{i\phi}A\sigma^x B\sigma^x C\sigma^x$, such that $ABC = I_d$

• Determinant one Givens rotation V_{jk} , implicitly buffer A, B, C by I_{d-2} :

• Another *QR* Decomposition: Gate library U(d), $\bigwedge_1(\sigma^x \oplus I_{d-2})$ builds any $V \in U(d^2)$

QR Technique: Two Qudit Universal $\implies n$ -Qudit Universal

• Suffices to use two-qudits to build any Givens rotation in $U(d^n)$

QR-Universality Summary Slide

- Laser Hamiltonians $H^x_{jk}, H^y_{jk} \Longrightarrow$ all one-qubit evolutions in U(d)
 - Coupling graph must be connected
 - If connected, no extra pulses required in general
- One-qudit unitaries, $\bigwedge_1(\sigma^x \oplus I_{d-2}) \Longrightarrow$ all two-qudit unitaries $V \in U(d^2)$
 - Much simpler construction for CINC = $\Lambda_1(INC)$
- Two-qudit unitaries \Longrightarrow all n-qudit unitaries $V \in U(d^n)$
 - Requires up to $\lceil n/\log_2 d \rceil$ ancilla

Outline

- I. Introduction to Qudits (Quantum Multi-level Logics)
- II. Universality & Selection Rules
- III. Complexity and Lower Bounds
- IV. Asymptotically Optimal Qudit State-Synthesis
- V. *QR*-based Asymptotically Optimal Circuits

Sard's Theorem

Def: A critical value of a smooth function of smooth manifolds $f: M \to N$ is any $n \in N$ such that there is some $p \in M$ with f(p) = n with the linear map of tangent spaces $(df)_p: T_pM \to T_nN$ not onto.

Sard's theorem: The set of critical values of any smooth map has measure zero.

Corollary: If dim $M < \dim N$, then image(f) is measure 0.

- $U(\ell)$ is a smooth submanifold of $\mathbb{C}^{\ell \times \ell}$, (real) dimension ℓ^2
- Qudit circuit topology τ with k two-qudit gates $V \in U(d^2)$ induces smooth evaluation map $f_{\tau}: U(1) \times U(d^2)^k \to U(d^n)$

Dimension-Based Bounds

- Simple gate library: $V \in U(d^2)$, two-qudit unitaries
- Consequence: Any universal circuit must contain at least d^{2n}/d^4 two-qudit gates
 - Finer analysis often possible
 - (Countably) Many circuits with too few boxes will not help
- $h(n) \in \Omega[f(n)]$ means $h(n) \ge Cf(n)$, some C and all $n \ge 1$
- Universality requires $\Omega(d^{2n})$ two-qudit gates

State-Synthesis Lower Bounds

- State-Synthesis Problem: Given $|\psi\rangle \in \mathcal{H}(n,d)$, construct small circuit realizing unitary U such that $U|0\rangle = |\psi\rangle$
- Projection of matrix on first column: smooth map
- $\dim_{\mathbb{R}} \mathcal{H}(n,d) = 2d^n$
- Result: At least $2d^n/d^4 \in \Omega(d^n)$ two-qudit gates for state synthesis

More Notation for Asymptotics

- $h(n) \in O[f(n)]$ means $h(n) \le Cf(n)$, all $n \ge 1$
- $h(n) \in \Theta[f(n)]$ means both $h(n) \in \Omega[f(n)], h(n) \in O[f(n)]$
- If a circuit problem requires $\Theta[f(n)]$ gates, i.e. $C_1f(n)$ gates required & $C_2f(n)$ construction exists $(C_1 < C_2,)$ then a O[f(n)] gate construction is asymptotically optimal
- Construction of $V \in U(d^n)$ of last section needs $O(n^2d^{2n})$ gates, not asymptotically optimal

Outline

- I. Introduction to Qudits (Quantum Multi-level Logics)
- II. Universality & Selection Rules
- III. Complexity and Lower Bounds
- IV. Asymptotically Optimal Qudit State-Synthesis
- V. *QR*-based Asymptotically Optimal Circuits

Notation: $\bigwedge(C, V)$

- $V \in U(d)$, $C = [C_1C_2...C_n]$ length n word from $\{0,1,...,d-1\} \sqcup \{*\} \sqcup \{T\}$ Only one T allowed
- $\bigwedge(C,V)$: n-qudit operator, applies V to the qudit of T iff all #'s match
- Case $C_n = T$:

$$\bigwedge([C_1C_2...C_{n-1}T],V)|c_1c_2...c_n\rangle = \left\{\begin{array}{cc} |c_1...c_{n-1}\rangle \otimes V|c_n\rangle, & c_j = C_j \text{ or } C_j = *\\ |c_1...c_{n-1}c_n\rangle, & \text{else} \end{array}\right.$$

• Case $C_j = T$, j < n: χ_j^n SWAP by $|j\rangle \leftrightarrow |n\rangle$, $\tilde{C} = [C_1C_2 \dots C_{j-1}C_nC_{j+1} \dots C_{n-1}T]$

$$\bigwedge(C,V) = \chi_j^n \bigwedge(\tilde{C},V) \chi_j^n$$

State-Synthesis Notation

- State-Synthesis Equation: $\prod_{k=1}^{p} \bigwedge [C(k), V(k)^{\dagger}] |0\rangle = |\psi\rangle$
- Adjoint Householder: $\prod_{k=1}^{p} \bigwedge [C(p-k+1), V(p-k+1)] | \psi \rangle = |0\rangle$
- One-qudit Answer: Householder $W, W|\psi\rangle = |0\rangle$

$$\begin{cases} |\eta\rangle &= |\psi\rangle - \sqrt{\langle\psi|\psi\rangle} \frac{\langle 0|\psi\rangle}{|\langle 0|\psi\rangle|} |0\rangle \\ W &= I_d - (2/\langle\eta|\eta\rangle) |\eta\rangle\langle\eta| \end{cases}$$

• Asymptotically optimal: In n-qudits, solve so total # of control boxes $\leq Cd^n$ (See slide 16.)

Clubsuit Householder Reduction

- Our Answer: $p = (d^n 1)/(d 1)$, one control only each C(k)
- Circuit: Topology recursive, V(k) are not
- Topology built using \(\bigsets-sequence \)
- Terms $\{s_j\}_{j=1}^{(d^n-1)/(d-1)}$: word from alphabet $\{0,1,\ldots,d-1\}\sqcup\{\clubsuit\}$
 - #'s encode amplitudes to zero
 - \clubsuit is stop-symbol, places T in C(k)

Clubsuit Householder Reduction Cont.

- Constructing nth ♣-sequence
 - In order, write dit s to sequence for every lead dit and every s in $(n-1)^{St}$ sequence
 - Append n-fold ♣♣… ♣
- Qutrit (d = 3) sample:

n	-sequence, $d=3$
1	*
2	0\$, 1\$, 2\$, \$\$
3	00\$, 01\$, 02\$, 0\$\$, 10\$, 11\$, 12\$, 1\$\$, 20\$, 21\$, 22\$, 2\$\$, \$\$\$
4	000\$, 001\$, 002\$, 00\$\$, 010\$, 011\$, 012\$, 01\$\$, 020\$, 021\$, 022\$, 02\$\$, 0\$\$
	100\$, 101\$, 102\$, 10\$\$, 110\$, 111\$, 112\$, 11\$\$, 120\$, 121\$, 122\$, 12\$\$, 12\$\$
	200\$, 201\$, 202\$, 20\$\$, 210\$, 211\$, 212\$, 21\$\$, 220\$, 221\$, 222\$, 22\$\$, 22\$\$\$, \$\$

Clubsuit Householder Reduction Cont.

```
2 — Line 1 *
1 — Line 2 1
0 — Line 3 *
0 — Line 4 *
♣ — V — Line 5 T
♣ — Line 6 *
♣ — Line 7 *
```

- $\bigwedge(C,V)$ given V, term t=2100 \$\mathre{A}\$\$, one control, first $\neq 0$ over first \$\mathre{A}\$
- T at top \P , V a $d \times d$ Householder to zero amplitudes $2100\ell00$, $\ell \geq 1$

Clubsuit Householder Reduction Summary

- Result: $\prod_{k=1}^{p} \bigwedge [C(p-k+1), V(p-k+1)] |\psi\rangle = |0\rangle$
 - $p = (d^n 1)/(d 1) \in O(d^n)$
 - Each C(k), at most one control \Longrightarrow two-qudit gate
 - Delicate argument (omitted): no $\bigwedge[\mathcal{C}(k), V(k)]$ destroys 0-amplitudes created by $\bigwedge[\mathcal{C}(j), V(j)], j < k$
- Result: Asymptotically Optimal State-Synthesis

Zeroes Introduced for 3 Qutrits: Lower 2 Entries from Depth-First Search of Tree

Outline

- I. Introduction to Qudits (Quantum Multi-level Logics)
- II. Universality & Selection Rules
- III. Complexity and Lower Bounds
- IV. Asymptotically Optimal Qudit State-Synthesis
- V. *QR*-based Asymptotically Optimal Circuits

Householder $U|\psi\rangle=|j\rangle$, $j\neq 0$

• $\bigwedge(\tilde{\mathcal{C}},\tilde{V})$: Similary transform of $\bigwedge(\mathcal{C},V)$ by $\otimes_{\ell=1}^n \oplus d_\ell$

$$ilde{C}_k = \left\{ egin{array}{ll} *, & C_k = * \ T, & C_k = T \ (C_k + d_k) \mathrm{mod} \ d, & C_k \in \{0, 1, \ldots, d-1\} \ ilde{V} = (\oplus d_q) V (\oplus d - d_q), \ \mathrm{where} \ \mathcal{C}_q = T \end{array}
ight.$$

- Notice: $|j\rangle = \left[\bigotimes_{\ell=1}^n (\oplus d_\ell) \right] |0\rangle$ for $j = d_1 \dots d_n$
 - Compute $| \varphi \rangle = [\otimes_{\ell=1}^n \oplus d d_\ell] | \psi \rangle$
 - Produce $\prod_{k=1}^{p} \bigwedge [C(p-k+1), V(p-k+1)] | \varphi \rangle = |00...0\rangle$
 - Consequence: $\prod_{k=1}^{p} \bigwedge [\tilde{C}(p-k+1), \tilde{V}(p-k+1)] |\psi\rangle = |j\rangle$

Triangle Algorithm: Optimal *n*-qudit Unitary Circuit

- for each of d block columns, width d^{n-1}
 - Triangulate $d^{n-1} \times d^{n-1}$ diagonal subblock, recursive, extra control
 - for each of d^{n-1} columns $j = d_{n-1}d_{n-2}\dots d_1$ in block-column
 - * Use \clubsuit -Householder to zero each subcol below block diagonal onto $d_{n-1}d_{n-2}\dots d_1$ -amplitude
 - * Use $\bigwedge([Td_{n-1}d_{n-2}...d_1],V)$ to clear remaining subdiagonal entries
- Makes more sense after watching movie

Number of Control Boxes for Triangle

• $O(d^{2n})$ control boxes: Asymptotically Optimal # of Gates from $U(d^2)$

\overline{d}	2	3	4	5	6	7	8
n							
2	5	17	39	74	125	195	287
3	40	285	1 140	3 370	8 820	17 535	33 880
4	220	3 240	22 176	100 000	345 060	987 840	2 464 000
5	1 040	32 130	379 776	2 631 500	12 931 920	49 999 110	
6	4 560	301 239	6 220 032	66 768 750	470 221 200		
7	19 200	2 757 807	100 279 728	1 676 043 750			
8	79 040	24 994 494	1 608 794 112				
9	321 280	225 584 676					
10	1 296 640	2 032 525 629					
11	5 212 160	1 120 813 409					
12	20 904 960						

Conclusions

- Qudits are much like qubits
 - Qubits: Optimal # of two-qubit gates is $\Theta(4^n)$
 - Clever constructions: $\Theta(d^{2n})$, not $O(n^2d^{2n})$ and $\Omega(d^{2n})$
- Tensor structures are not fungible
- Qudit emulation with qubits is bad design
- Complexities $\Theta(d^{2n})$, dits vs $\Theta(2^{2n})$, bits: asymptotically dits are no better & no worse

http://www.arxiv.org Coordinates

- QR techniques, first use of CINC: q-ph/0002033
- Qudit Fourier transforms: q-ph/9702028
- Restricted one-qudit universality: q-ph/0407223
- Asymptotically Optimal n-qudit universality: q-ph/0410116